Autocatalytic Reduction of Nitric Acid by an Acid-Stable NADH Analogue

Shunichi FUKUZUMI* and Tomohiro YORISUE

Department of Applied Chemistry, Faculty of Engineering,

Osaka University, Suita, Osaka 565

The reduction of nitric acid to nitrous acid by an acid-stable NADH analogue proceeds autocatalytically in the presence of perchloric acid in acetonitrile <u>via</u> novel chain reactions where the reduction of one nitrous acid in the presence of nitric acid eventually results in the formation of two nitrous acid.

The reduction of nitrate $(\mathrm{NO_3}^-)$ to nitrite $(\mathrm{NO_2}^-)$ is catalyzed in nature by the enzyme nitrate reductase. NADH is a common source of reducing equivalents for $\mathrm{NO_3}^-$ reduction in the enzymatically catalyzed reactions. Substantial efforts have been directed toward the non-enzymatic reduction of $\mathrm{NO_3}^-$ by electrochemical and photochemical methods. However, no nonenzymatic reduction of $\mathrm{NO_3}^-$ by NADH or the analogues has so far been reported. Here we report that an acid-stable NADH analogue, 9,10-dihydro-10-methylacridine (AcrH₂), and reduce $\mathrm{NO_3}^-$ to $\mathrm{NO_2}^-$ efficiently in the presence of HClO₄ in MeCN via novel autocatalytic reactions.

No oxidation of $AcrH_2$ by NO_3^- has been observed in deaerated MeCN in the dark at 298 K. The addition of $HClO_4$ (70%, 2.0 mol dm^{-3}) to the deaerated MeCN solution containing $AcrH_2$ (4.0 x 10^{-3} mol dm^{-3}) and $NaNO_3$ (0.10 mol dm^{-3}), however, results in the facile oxidation of $AcrH_2$ by HNO_3 to yield 10-methylacridinium ion ($AcrH^+$) and HNO_2 (Eq. 1). The yield of

 ${\rm HNO}_2$ was the same as that of AcrH⁺.⁵⁾ The reaction was monitored spectrophotometrically at 358 nm, where the absorbance of species other than AcrH⁺ is negligible, by using a quartz cuvette (4.6 cm³) containing a 2.4 cm³ MeCN solution. A typical time course is shown in Fig. 1, where the

Fig. 1. Time dependence for the reduction of NaNO₃ (0.16 mol dm⁻³) by $AcrH_2$ (8.0 x 10^{-4} mol dm⁻³) in the presence of $HClO_4$ (1.0 mol dm⁻³) in MeCN at 298 K. The calculated time dependence (o) is obtained by using Eq. 4. with $t_{1/2}$ = 159 s and c = 0.25 s⁻¹.

Fig. 2. Plot of the half-life $(t_{1/2})$ <u>vs</u>. [NaNO₃] for the reduction of NaNO₃ by AcrH₂ (5.0 x 10^{-4} mol dm⁻³) in the presence of HClO₄ (2.0 mol dm⁻³) in MeCN at 298 K.

very slow rise in absorbance is followed by a rapid autocatalytic buildup of ${\rm Acr H}^+$. In such a case the half-life of the reaction $({\rm t_{1/2}})$ is approximately equal to the time when the rapid buildup starts. The ${\rm t_{1/2}}$ value is extremely sensitive to the initial concentration of ${\rm NO_3}^-$ in the presence of excess ${\rm HClO_4}$. The dependence of ${\rm t_{1/2}}$ on $[{\rm NaNO_3}]$ in the presence of ${\rm HClO_4}$ (2.0 mol dm⁻³) is shown in Fig. 2, where a sharp dropoff of ${\rm t_{1/2}}$ is observed at $[{\rm NaNO_3}] > 7.0 \times 10^{-2}$ mol dm⁻³. In the region $[{\rm NaNO_3}] < 7.0 \times 10^{-2}$ mol dm⁻³, no reaction has taken place at all. The value of such a critical concentration $[{\rm NaNO_3}]_c$ is independent of $[{\rm HClO_4}]_c$ which is in excess to $[{\rm NaNO_3}]_c$. However, the $[{\rm NaNO_3}]_c$ is very sensitive to the volume of the gas phase of the cuvette. As such no critical concentration of ${\rm NaNO_3}_a$ has been observed, when the cuvette was filled with the reactant solution. The addition of a catalytic amount of ${\rm NaNO_2}_a$ also causes the drastic decrease in the ${\rm t_{1/2}}_2$ value.

We have recently reported that ${\rm NO_2}^-$ is readily reduced by ${\rm AcrH_2}$ in the presence of ${\rm HClO_4}$ in MeCN to yield NO and ${\rm AcrH^+}$ (Eq. 2).⁶⁾ On the other

$$AcrH_2 + 2NO_2^- + 3H^+ \longrightarrow AcrH^+ + 2NO + 2H_2O$$
 (2)

hand, NO is known to react with ${\rm NO_3}^-$ in the presence of an acid to yield ${\rm NO_2}$ and ${\rm HNO_2}$. Thus, based on the above results, the autocatalytic reduction of ${\rm HNO_3}$ by ${\rm AcrH_2}$ may proceed as shown in Scheme 1. The reaction

Scheme 1.

may start by the acid-catalyzed reduction of HNO_3 to HNO_2 by AcrII_2 . This step must be quite slow judging from the very slow initial buildup of AcrH^+ (Fig. 1). Once HNO_2 is formed, a rapid autocatalytic buildup of HNO_2 may occur via the facile one-electron reduction of HNO_2 to NO by AcrII_2 , 6) followed by the fast reaction of NO with HNO_3 to yield NO_2 , 7) regenerating HNO_2 (Scheme 1). Since NO_2 is also readily reduced by AcrII_2 in the presence of HClO_4 to give another HNO_2 molecule, the initial formation of one HNO_2 molecule results in the formation of two HNO_2 molecules (Scheme 1). Thus, the autocatalytic reduction of HNO_3 by AcrII_2 may proceed via chain reactions where HNO_2 plays the pivotal role in determining the kinetics of the overall reaction. This may be the reason why the initial addition of a catalytic amount of HNO_2 causes the drastic decrease in the $\mathrm{t}_{1/2}$ value.

According to Scheme 1, the rate of formation of $Acril^+$ is given by Eq. 3, where k_1 and k_2 are the rate constants of the initial slow reduction of

$$d[AcrH^{+}]/dt = [AcrH_{2}](k_{1}[HNO_{3}] + 2k_{2}[HNO_{2}])$$
 (3)

 ${\rm HNO_3}$ and the subsequent fast reduction of ${\rm HNO_2}$, respectively. Since ${\rm [AcrH_2]}$ = ${\rm [AcrH_2]_0}$ - ${\rm [AcrH^+]}$, ${\rm [HNO_2]}$ = ${\rm [AcrH^+]}$, and ${\rm [HNO_3]}$ >> ${\rm [AcrH_2]}$, Eq. 3 is readily solved to yield Eq. 4, where ${\rm c_1}$ = ${\rm k_1[HNO_3]}$ + ${\rm 2k_2[AcrH_2]_0}$ and

$$[AcrH^+]/[AcrH_2]_0 = [exp(ct) - 1]/[exp(ct) + exp(ct_{1/2})]$$
 (4)

the half-life $(t_{1/2})$ is given by $c^{-1}\ln(2k_2[AcrH_2]_0/k_1[HNO_3])$ under the conditions that $2k_2[AcrH_2] >> k_1[HNO_3]$. The calculated time dependence based on Eq. 4 agrees well with the experimental result of the rapid and

sudden buildup of Acrii⁺ as shown in Fig. 1, demonstrating the validity of the kinetic formulation (Eq. 3).

If a tiny fraction of NO (α) is escaped from the solution to the gas phase (Scheme 1), Eq. 3 is rewritten by Eq. 5, where [AcrII⁺] = [IINO₂] +

$$d[AcrH^{+}]/dt = [AcrH_{2}]\{k_{1}[HNO_{3}] + 2k_{2}([AcrH^{+}] - 3\alpha/2)\}$$
 (5)

 $(3/2)\alpha$. In such a case no rapid buildup of AcrH⁺ may take place under the conditions that $[\text{HNO}_3] < (3k_2/k_1)\alpha$, since the rate of formation of AcrH⁺ becomes zero when $[\text{AcrH}^+]$ reaches the value $(3/2)\alpha - (k_1/2k_2)[\text{HNO}_3]$. Under the conditions that $[\text{HNO}_3] > (3k_2/k_1)\alpha$, the reaction undergoes to completion.⁸⁾ This may be the reason why there exists the critical concentration of $[\text{HNO}_3]$ for the reaction as shown in Fig. 2, but why such a critical phenomenon disappears when the reaction cuvette is filled with the solution.

References

- 1) M. W. W. Adams and L. E. Mortenston, "Molybdenum Enzymes," ed by T. S. Spiro, Wiley-interscience, New York (1985), Chap. 10.
- M. H. Barley, K. J. Takeuchi, and T. J. Meyer, J. Am. Chem. Soc., 108, 5876 (1986); S. Kuwabata, S. Uezumi, K. Tanaka, and T. Tanaka, Inorg. Chem., 25, 3018 (1986); I. Taniguchi, N. Nakashima, and K. Yasukouchi, J. Chem. Soc., Chem. Commun., 1986, 1814; H.-L. Li, W. C. Anderson, J. Q. Chambers, and D. T. Hobbs, Inorg. Chem., 28, 863 (1989).
- I. Willner, N. Lapidot, and A. Riklin, J. Am. Chem. Soc., 111, 1883 (1989); I. Willner, A. Riklin, and N. Lapidot, ibid., 112, 6438 (1990);
 A. J. Frank and M. Gratzel, Inorg. Chem., 21, 3834 (1982); A. Kudo, K. Domen, K. Maruya, and T. Onishi, Chem. Lett., 1987, 1019.
- 4) S. Fukuzumi, M. Ishikawa, and T. Tanaka, Tetrahedron, 42, 1021 (1986).
- 5) The HNO_2 formed was separated from AcrH^+ by isolating as AgNO_2 by adding AgNO_3 to the resulting solution after neutralization with NaOH. Then, the yield of HNO_2 was determined by the absorption spectrum ($\lambda_{\mathrm{max}} = 372$ nm, $\varepsilon_{\mathrm{max}} = 55.9$ dm³ mol⁻¹ cm⁻¹).
- 6) S. Fukuzumi and T. Yorisue, Chem. Lett., 1990, 871.
- 7) I. R. Epstein, K. Kustin, and L. J. Warshaw, J. Am. Chem. Soc., 102, 3751 (1980); M. Orban and I. R. Epstein, J. Am. Chem. Soc., 104, 5918 (1982).
- 8) Only a trace amount of NO was detected in the gas phase of the cuvette by the glc analysis, indicating that $k_2 >> k_1$.

(Received August 23, 1991)